Investigation of the double-angle formulae

Authors: Cannon, W., Aravind, I., Cowlishaw, A. **Abstract:** This paper explores the proof of the double-angle formulae.

1 Height of the triangle

The height of the triangle is equal to $2tan\theta = 2t$.

2 Proof of the double-angle formulae

As the sum of interior angles of a triangle is equal to 180° , the angle *ACB* is equal to $180 - 2\theta$. As the sum of angles on a straight line is equal to 180° , the angle *ACD* is equal to 2θ . As the length *BD* is equal to 2, the length *CD* is equal to 2 - x. The length *AD* is equal to 2t.

The trigonometric ratios with respect to the angle ACD,

 $tan2\theta = \frac{2t}{2-x}$ $sin2\theta = \frac{2t}{x}$ $cos2\theta = \frac{2-x}{x}$

The Pythagorean theorem with respect to the lengths *AC*, *CD* and *AD*, $x^{2} = (2 - x)^{2} + (2t)^{2}$ $x^{2} = x^{2} - 4x + 4 + 4t^{2}$ $4x = 4 + 4t^{2}$

Using the substitution $x = 1 + t^2$ to prove the double angle formulae, $tan2\theta = \frac{2t}{2-(1+t^2)} = \frac{2t}{1-t^2}$ $sin2\theta = \frac{2t}{1+t^2}$ $cos2\theta = \frac{2-(1+t^2)}{1+t^2} = \frac{1-t^2}{1+t^2}$