# Investigation of the double-angle formulae 

Authors: Cannon, W., Aravind, I., Cowlishaw, A.
Abstract: This paper explores the proof of the double-angle formulae.

## 1 Height of the triangle



The height of the triangle is equal to $2 \tan \theta=2 t$.

## 2 Proof of the double-angle formulae



As the sum of interior angles of a triangle is equal to $180^{\circ}$, the angle $A C B$ is equal to $180-2 \theta$. As the sum of angles on a straight line is equal to $180^{\circ}$, the angle $A C D$ is equal to $2 \theta$. As the length $B D$ is equal to 2 , the length $C D$ is equal to $2-x$. The length $A D$ is equal to $2 t$.

The trigonometric ratios with respect to the angle $A C D$,
$\tan 2 \theta=\frac{2 t}{2-x}$
$\sin 2 \theta=\frac{2 t}{x}$
$\cos 2 \theta=\frac{2-x}{x}$

The Pythagorean theorem with respect to the lengths $A C, C D$ and $A D$,
$x^{2}=(2-x)^{2}+(2 t)^{2}$
$x^{2}=x^{2}-4 x+4+4 t^{2}$
$4 x=4+4 t^{2}$

Using the substitution $x=1+t^{2}$ to prove the double angle formulae,
$\tan 2 \theta=\frac{2 t}{2-\left(1+t^{2}\right)}=\frac{2 t}{1-t^{2}}$
$\sin 2 \theta=\frac{2 t}{1+t^{2}}$
$\cos 2 \theta=\frac{2-\left(1+t^{2}\right)}{1+t^{2}}=\frac{1-t^{2}}{1+t^{2}}$

