Consider a right angled triangle with an acute angle of θ. Let the base of the triangle be of length 2.

Find the height of the triangle in terms of t, where $t=\tan \theta$.

Now imagine a line in the triangle which forms an isosceles triangle with two angles equal to θ.

Use this diagram to prove the double angle formula, where $t=\tan \theta$:

$$
\tan 2 \theta=\frac{2 t}{1-t^{2}}, \quad \sin 2 \theta=\frac{2 t}{1+t^{2}}, \quad \cos 2 \theta=\frac{1-t^{2}}{1+t^{2}}
$$

