Pair Products

Year 8 Set 1: British International School Phuket

This is a summary of the work our students did on this task:

4 consecutive numbers

$$
x, x+1, x+2, x+3
$$

Product of first and last:

$$
x(x+3)=x^{2}+3 x
$$

Product of middle two:

$$
(x+1)(x+2)=x^{2}+3 x+2
$$

Difference of two results:

$$
x^{2}+3 x+2-\left(x^{2}+3 x\right)=2
$$

5 consecutive numbers

$$
x, x+1, x+2, x+3, x+4
$$

No 2 middle numbers so square the middle number
Product of first and last:

$$
x(x+4)=x^{2}+4 x
$$

Product of middle squared:

$$
(x+2)^{2}=x^{2}+4 x+4
$$

Difference of two results:

$$
x^{2}+4 x+4-\left(x^{2}+4 x\right)=4
$$

Following the same method we get the following table:

Consecutive numbers	
3	1
4	2
5	4
6	6
7	9
8	12
9	16
10	20
11	25

Students then noticed that there were separate pattens for odds and even consecutive numbers.

For the odd consecutive numbers we have:

1,4,9,16,25

This has nth term n^{2} when we take 3 consecutive numbers as $n=1$ etc.

For the even consecutive numbers we have:

$$
2,6,12,20
$$

This has nth term $n^{2}+n$ when we take 4 consecutive numbers as $n=1$ etc.

Prem also then extended the table back to 1 consecutive number, and then found a recursive relationship:

Consecutive terms	1	2	3	4	5	6	7	8
difference	0	0	1	2	4	6	9	12

"The difference in n consecutive numbers is the previous difference plus $\frac{n-1}{2}$ (rounded down if a decimal)." We can write this as:

$$
D(n)=D(n-1)+\left\lfloor\frac{n-1}{2}\right\rfloor
$$

Pratik found the fourth difference of this sequence:

Consecutive terms	1	2	3	4	5	6	7	8
difference	0	0	1	2	4	6	9	12

Which he noticed alternated between ± 2.

Even and odd consecutive numbers

Students then looked at consecutive even numbers:

4 consecutive even numbers

$$
2 x, 2 x+2,2 x+4,2 x+6
$$

Product of first and last:

$$
2 x(2 x+6)=4 x^{2}+12 x
$$

Product of middle two:

$$
(2 x+2)(2 x+4)=4 x^{2}+12 x+8
$$

Difference of two results:

$$
4 x^{2}+12 x+8-\left(4 x^{2}+12 x\right)=8
$$

Chloe that made the following table to summarise this data:

Consecutive even numbers	
4	8
5	16
6	24
7	36
8	48
9	64
10	80
11	100

She noticed that there were 2 differences of 8 followed by 2 differences of 12 followed by 2 differences of 16 . Using this she predicted that the next 2 differences would be 20 . She then calculated this and found that this was correct.

Pratik then used the same method for odd numbers

$$
2 x+1,2 x+3,2 x+5,2 x+7
$$

Which gave a difference of 8 .

General case

Venya tackled the general case of n consecutive numbers with difference q :

$$
x, x+q, x+2 q, \ldots . x+q(n-1)
$$

This has first term multiplied by last term as:

$$
x(x+q(n-1))=x^{2}+x q(n-1)
$$

If there are an even number of terms then the middle 2 multiplied together gives:

$$
\begin{aligned}
& \left(x+\left(\frac{n}{2}\right) q\right)\left(x+\left(\frac{n}{2}-1\right) q\right) \\
= & x^{2}+x q(n-1)+q^{2} \frac{n}{2}\left(\frac{n}{2}-1\right)
\end{aligned}
$$

Therefore the difference he found was:

$$
q^{2} \frac{n}{2}\left(\frac{n}{2}-1\right)
$$

For an odd number of n consecutive terms this method gave the middle number squared as:

$$
\begin{gathered}
\left(x+\left(\frac{n-1}{2}\right) q\right)^{2} \\
=x^{2}+x q(n-1)+q^{2} \frac{n-1}{4}
\end{gathered}
$$

Therefore the difference he found was:

$$
q^{2} \frac{(n-1)^{2}}{4}
$$

Final result:

An even number n of consecutive numbers with difference q has Pair Products given by:

$$
q^{2} \frac{n}{2}\left(\frac{n}{2}-1\right)
$$

An odd number n of consecutive numbers with difference q has Pair Products given by:

$$
q^{2} \frac{(n-1)^{2}}{4}
$$

