- The four consecutive numbers= $n, n+1, n+2, n+3$

The outer numbers multiplied together $=\mathrm{n}^{*}(\mathrm{n}+3)=n^{2}+3 n$
The inner numbers multiplied together $=(n+1)(n+2)=n^{2}+3 n+2$

This shows that no matter what number " n " is represented by, the inner two numbers multiplied together will always have a total of 2 more than the outer numbers.

- examples: 1,2,3,4,
- 1x4=4, 2x3=6 6-4=2
- The five consecutive numbers= $n, n+1, n+2, n+3, n+4$

The outer numbers multiplied together $=\mathrm{n}^{*}(\mathrm{n}+4)=n^{2}+4 n$
The secondary outer numbers multiplied together $=(n+1)(n+3)=n^{2}+4 n+3$

This shows that no matter what number " n " is represented by, the secondary inner numbers will have a multiplication total of 3 more than the multiplication total of the outer numbers.

- My prediction;

I believe the more consecutive numbers you add the bigger difference there will be, for example: the 4 consecutive numbers have a difference of 2 when the formula is carried out, and when there are 5 consecutive numbers, then there is a difference of 3 when the formula is carried out, so i believe when i calculate the 6 consecutive numbers then there will be a difference of 4 when the formula is carried out. I will try to prove this below.

- The six consecutive numbers: $n, n+1, n+2, n+3, n+4, n+5$

The outer numbers multiplied together $=\mathrm{n}^{*}(\mathrm{n}+5)=n^{2}+5 n$
The secondary outer numbers multiplied together $=(n+1)(n+4)=n^{2}+5 n+4$
Examples; 1,2,3,4,5,

- Deducting from the 3 different equations I wrote including 4, 5 and 6 consecutive numbers, I can conclude that the more consecutive numbers there are, the higher the remainder will be, adding 1 remainder on to the total amount of remainders per each consecutive number added.

Alain Ilincev, Teodor Novotny, Fabian Setlik

- The 4 odd numbers: $\mathbf{2 n + 1}, 2 n+3,2 n+5,2 n+7$

The outer numbers multiplied together $=(2 n+1)(2 n+7)=4 n^{2}+16 n+7$
The secondary outer numbers multiplied together $=(2 n+3)(2 n+5)=4 n^{2}+16 n+15$
This shows that no matter what odd number " n " is represented by, the secondary outer numbers multiplied together will always have 8 more in their remainder than the outer numbers multiplied together.

> Example:
> $3,5,7,9$
> $5 \times 7=35$
> $3 \times 9=27$
> $35-27=8$

- The 4 even numbers: $2 n, 2 n+2,2 n+4,2 n+6$

The outer numbers multiplied together $=2 n(2 n+6)=4 n^{2}+12 n$
The secondary numbers multiplied together $=(2 n+2)(2 n+4)=4 n^{2}+12 n+8$

This shows that no matter what even number " n " is represented by, the secondary outer numbers multiplied together will always have 8 more in their remainder than the outer numbers multiplied together.

> Example:
> $2,4,6,8$
> $2 \times 6=24$
> $2 \times 8=16$
> $24-16=8$

- Both the even number calculation and odd number calculation are different from each other, yet have the same outcome.

