Challenge 1

Challenge 2

Challenge 3a

I have realised that to end up with a total that has a 2 in the ones column, the combined ones columns of the digits I am adding have to equal $2,12,22,32,42$. I cannot make a total where the ones column adds up to 52 because it use all our numbers and all our numbers only equal 51 .

Total of 2

I know that $1+1=2$, so any two numbers that have a 1 in the ones column will equal a number with 2 in the ones column:
$11+281$
$11+71$
$11+91$
$281+71$
$281+91$
71+91
Total of 12
I also know that $9+1+1+1=12$ so has a 2 in the ones column so that tells me that all these combinations end up with a 2 in the ones column:
$29+71+281+11$
$29+71+281+91$
$29+71+91+11$
$29+281+11+91$
$179+71+281+11$
$179+71+281+91$
$179+71+91+11$
$179+281+11+91$

Total of 22

I know that 7+7+8=22 and has a 2 as the ones digit.
All the numbers that are the product of three numbers ending in 7,7 and 8 will always have a 2 in the ones digit. So that tells me that all these combinations end up with a 2 in the ones column:
$227+137+18$
$227+47+18$
$137+47+18$

Using my knowledge of number bonds I know that four numbers with 7, 7, 7 and 1 in the ones column will always equal a number with 2 in the ones column because $7+7+8=7+7+7+8$

So that tells me that all these combinations end up with a 2 in the ones column:
$227+137+47+11$
$227+137+47+91$
$227+137+47+71$
$227+137+47+281$

Total of 32

I know that $9+9+7+7=32$, so four numbers with these digits in the ones column will equal a number that has a 2 in the ones column:
$29+179+47+137$
$29+179+47+227$
$29+179+227+137$
I also know that I can switch one of the 9 s for an 8 and a 1, so five numbers with digits $7+7+9+8+1$ in the ones column will equal a number that has a 2 in the ones column:

```
18+91+179+47+137
```

$18+91+179+47+227$
$18+91+179+227+137$
$18+91+29+47+137$
$18+91+29+47+227$
$18+91+29+227+137$
$18+11+179+47+137$
$18+11+179+47+227$
$18+11+179+227+137$
$18+11+29+47+137$
$18+11+29+47+227$
$18+11+29+227+137$
$18+281+179+47+137$
$18+281+179+47+227$
$18+281+179+227+137$
$18+281+29+47+137$
$18+281+29+47+227$
$18+281+29+227+137$
$18+71+179+47+137$
$18+71+179+47+227$
$18+71+179+227+137$
$18+71+29+47+137$
$18+71+29+47+227$
$18+71+29+227+137$

Total of 42

I can make a digit where the ones column equals 42 so the total will have a 2 in the ones column using digits that end in $9+9+7+7+7+1+1+1$:
$179+29+137+227+47+281+91+71$
$179+29+137+227+47+281+11+71$
$179+29+137+227+47+281+11+91$
$179+29+137+227+47+11+91+71$

3b
I have realised that to end up with a total that has an 8 in the ones column, the combined ones columns of the digits I am adding have to equal $8,18,28,38,48$. I cannot make a total where the ones column adds up to 58 because it uses all our numbers and all our numbers only equal 51.

Total of 8

$47+11$
47+91
$47+281$

47+71
$137+11$
$137+91$
$137+281$
$137+71$

227+11
$227+91$
$227+281$
$227+71$

Total of 18

The simplest version will have $1+9+8$ in the ones column:
$18+29+11$
$18+29+91$
$18+29+71$
$18+29+281$
$18+179+11$
$18+179+91$
$18+179+71$
$18+179+281$

The next is a bit harder because you have to use $7+1+9+1$ in the ones column:

```
29+11+47+71
29+11+47+91
29+11+47+281
29+11+227+71
29+11+227+91
29+11+227+281
29+11+137+71
29+11+137+91
29+11+137+281
29+71+47+91
29+71+47+281
29+71+227+91
29+71+227+281
29+71+137+91
29+71+137+281
29+91+47+281
29+91+227+281
179+11+47+71
179+11+47+91
179+11+47+281
179+11+227+71
179+11+227+91
179+11+227+281
179+11+137+71
179+11+137+91
179+11+137+281
179+71+47+91
179+71+47+281
179+71+227+91
179+71+227+281
```

$179+71+137+91$
$179+71+137+281$
$179+91+47+281$
$179+91+227+281$
Once I had the full set using 29 as the digit with 9 in the ones column it was easy find the full set with 179 with 9 in the ones column as I just replaced 29 with 179 for every combination that I had already found.

Since I have four numbers with 1 in the ones column and at least two numbers with 7 in the ones column, the next combination will be $1+1+1+1+7+7$.
$11+281+71+91+227+137$
$11+281+71+91+227+47$
$11+281+71+91+137+47$
Total of 28
The easiest way to make this is $8+9+9+1+1$ in the ones column:
$18+179+29+11+71$
$18+179+29+11+91$
$18+179+29+11+281$
$18+179+29+71+91$
$18+179+29+71+281$
$18+179+29+91+281$
Next I will just change what I have done above to be $7+1$ instead of 8 , so the numbers I use will have 7+1+9+9+1+1 as I know 7+1=8:
$47+91+179+29+11+71$
$47+281+179+29+11+71$
$47+11+179+29+281+91$
$137+91+179+29+11+71$
$137+281+179+29+11+71$
$137+11+179+29+281+91$
$227+91+179+29+11+71$
$227+281+179+29+11+71$
$227+11+179+29+281+91$
I will now change what I have done to make 28 by changing 9 to $7+1+1$, so the numbers I will use in the ones column are $8+9+7+1+1+1+1$:
$18+29+47+11+71+91+281$
$18+29+137+11+71+91+281$
$18+29+227+11+71+91+281$
$18+179+47+11+71+91+281$
$18+179+137+11+71+91+281$
$18+179+227+11+71+91+281$

Total of 38

To make 38 I can use the following numbers in the ones column, $7+7+7+9+8$ (I chose these numbers as I know that $3 \times 7=21$, plus $9=30$, plus $8=38$)
$227+137+47+29+18$
$227+137+47+179+18$
I cannot find any other ways of making 38 because I have used all of the 7 s which is what I would usually replace 9 or 8 with (by adding 1s).

Total of 48

If I use all the numbers it totals 51, so if I minus 3 of the numbers ending in 1 I will have a total of 48 in the ones column. For the numbers that I will add together, in the ones column I need $9+9+8+7+7+7+1$:
$179+29+18+227+137+47+11$
$179+29+18+227+137+47+71$
$179+29+18+227+137+47+91$
$179+29+18+227+137+47+281$

