Summing to One

First I shall prove a famous lemma.
Lemma: $\log _{a} x y=\log _{a} x+\log _{a} y$

Proof

Let $\mathrm{a}^{\wedge} \mathrm{n}=\mathrm{x}$ and $\mathrm{a}^{\wedge} \mathrm{m}=\mathrm{y}$
Therefore, $\log _{a} x=n$ and $\log _{a} y=m$.
$\Rightarrow \log _{\mathrm{a}} \mathrm{xy}=\log _{\mathrm{a}}\left(\mathrm{a}^{\wedge} \mathrm{n}^{*} \mathrm{a}^{\wedge} \mathrm{m}\right)$
$\Rightarrow \log _{\mathrm{a}} \mathrm{xy}=\log _{\mathrm{a}} \mathrm{a}^{\wedge}(\mathrm{m}+\mathrm{n})$
$\Rightarrow \log _{\mathrm{a}} \mathrm{xy}=(\mathrm{m}+\mathrm{n}) \log _{\mathrm{a}} \mathrm{a}$
$\Rightarrow \log _{\mathrm{a}} \mathrm{xy}=\mathrm{m}+\mathrm{n}$
$\Rightarrow \log _{a} x y=\log _{a} x+\log _{a} y$
This lemma can be generalized to any number of variables as multiplication is associative.

Part 1

$\log _{81} 81=\log _{81} 3^{*} 3^{*} 3^{*} 3$
$\Rightarrow 1=\log _{81} 3+\log _{81} 3+\log _{81} 3+\log _{81} 3$
Hence $4 \log _{81} 3$ are required to make 1 .

Part II

$\log _{6} x+\log _{6} y=1$
$\Rightarrow \log _{6} x y=\log _{6} 6$
$\Rightarrow \mathrm{xy}=6$
(Eq I)
From (Eq I) all possible ways to do so are pairs of prime factors of 6 such that their product is 6 .

So, the ways to do this are $(6,1),(3,2),(2,3) \&(1,6)$.
Similarly, it can be generalized that all possible values for the equation $\log _{a} x+\log _{a} y=1$
are pairs of prime factors of a such that their product is a just by replacing 6 with a.

For $\log _{12} x+\log _{12} y=1$
the values of $x \& y$ are
$(1,12),(2,6),(3,4),(4,3),(6,2) \&(12,1)$.
For $\log _{24} x+\log _{24} y=1$ the values of $x \& y$ are $(1,24),(2,12),(3,8),(4,6),(6,4),(8,3),(12,2) \&(24,1)$.

