I used the formula: mean x number of quantities $=$ sum of quantities, to find a target figure for each set.

1) Mean of 3 for 3 numbers, $3 \times 3=9$ (sum of quantities for this set)

Because 2 is the mode, it must appear at least twice: $2+2+\mathrm{n}=9$, so $\mathrm{n}=5$
Set is $2,2,5$
2) Mean of 7 for 3 numbers, $7 x 3=21$ (sum of quantities for this set)

Mode of 10 , so 10 must appear at least twice: $10+10+n=21$, so $n=1 \quad$ Set is $10,10,1$
3) Mean of 8 for 3 numbers, $8 \times 3=24$ (sum of quantities for this set)

Median of 10 , so 10 is the second quantity: $a+10+b=24$, so $a+b=14$.
Range $=8$, there are 7 possible ways to make 14 using positive integers, but only $(3,11)$ has a range of 8 .
Set is $3,10,11$
4) Mean of 7.5 for 4 numbers, $7.5 \times 4=30$ (sum of integers in this set)

Mode is 6 , so 6 must appear at least twice, so $6+6+\mathrm{a}+\mathrm{b}=30$. To calculate a median, you have to list the numbers in order of size. The median is 7 , and there is an even number of quantities in this set, so 7 is also the mean of the middle two numbers: $6+a=14(14 \div 2=$ median 7$)$, so $a=8$ and $b=10$. Set is $6,6,8,10$
5. Mean of 6 for 4 numbers, $6 \times 4=24$ (sum of integers in this set)

$$
a+c+d+b=24
$$

If the median is 6.5 , and there is an even number of integers in the set, then 6.5 is also the mean of the middle two quantities: $\mathbf{c}+\mathbf{d}=\mathbf{1 3}(\mathbf{1 3} \div \mathbf{2}=\mathbf{6} .5)$. There are 6 possible pairs of positive integers that add up to 13: $1+12,2+11,3+10,4+9,5+8$ and $6+7$; and these must lie in the middle of the set so that $\mathrm{a}<\mathrm{c}<\mathrm{d}<\mathrm{b}$
$\mathrm{a}+\mathrm{c}+\mathrm{d}+\mathrm{b}=24$, but if $\mathrm{c}+\mathbf{d}=\mathbf{1 3}$, then $\mathrm{a}+\mathrm{b}$ must $=11 .(13+11=24)$
But this is not possible using only positive integers. The smallest positive integer is 1 ; zero is neither negative nor positive. You can solve this using non-negative integers (includes zero): $\{0,1,2,3,4,5, \ldots\}$, but this is NOT the same as using positive integers: $\{1,2,3,4,5, \ldots\}$, which is what the question asks for.

Proof:
$0,6,7,11$ satisfies: median 6.5 , range 11 , mean 6 ,
$1,6,7,12$ satisfies: median 6.5 , range 11 , but mean $6.5(26 \div 4=6.5)$
$2,6,7,13$ satisfies: median 6.5 , range 11 , but mean $7(28 \div 4=7)$
In this model, you are adding 2 to the sum of integers every time, so the mean increases by 0.5 .
6) Mean of 4 for 5 numbers, $4 \times 5=20$ (sum of integers in this set)

Mode is 3 , so 3 must appear at least twice. Range $=9$. The possible pairs of non-negative integers that satisfy a range of 9 are: $(0,9),(1,10),(2,11)$ etc. I used trial and error, to find a solution.

0	+	3	+	3	+	n		9	$=$	20	$\mathrm{n}=5:\{0,3,3,5,9\}$ satisfies mean $=4$, mode $=3$, range $=9$, but uses a non-negative integer (zero is neither negative nor positive)
1	+	3	+	3	+	n	+	10	$=$	20	$\mathrm{n}=3:\{1,3,3,3,10\}$ satisfies mean $=4$, mode $=3$, range $=9$,
2	+	3	+	3	+	n	+	11	$=$	20	$\mathrm{n}=1\{1,2,3,3,11\}$ satisfies mean $=4$, mode $=3$, but range $=10$

As in question 5, you are adding 2 to the sum of integers as you progress down the table, but this time can use n as a balancing figure (which decreases by 2 , to compensate) and so maintain a mean of 20 .

Using positive integers only: 1,3,3,3,10 works.
Using non-negative integers, then $0,3,3,5,9$ also works (but understand that zero is neither positive nor negative).
7) Mean of 4 for 5 numbers, $4 \times 5=20$ (sum of integers in this set). Mode is 2 , so 2 must appear at least twice. Range $=6$, pairs of possible positive integers with range 6 are: $(1,7),(2,8),(3,9)$ etc.. Using trial and error I found that only the range pair $(2,8)$ worked, and then used this to find the second pair:

$$
2+2+a+b+8=20 \quad \text { so } a+b=8
$$

$2,2,2,6,8$ and $2,2,3,5,8$ satisfy the criteria.
8. Mean of 7 for 5 numbers, $7 \times 5=35$ (sum of integers in this set). Mode is 7 , so 7 must appear at least twice. The three numbers left total $21(35-7-7=21)$. Range $=10$. To find all three sets, start at 1 , and increase the first quantity, whilst maintaining a range of 10 . Then use a balancing figure to maintain a mean of 7 .

Sets are:
1,7,7,9,11
2,7,7,7,12
3,5,7,7,13

Extension

Find sets of positive integers with mean 4, mode 1, median 2 and range 10
a) Four numbers $=1,1,3,11$
b) Five numbers $=1,1,2,5,11$
c) Six numbers $=1,1,1,3,7,11$
d) One hundred numbers - see spreadsheet for one possible solution.

I explored patterns on a spreadsheet for multiples of 10 integers, although once you get past six quantities, there are actually many possible solutions.

