Can you find a number with the property that when it is divided by each of the numbers 2 to 10, the remainder is always one less than the number it is has been divided by?
Can you find the smallest number that satisfies this condition?
I started by looking at the divisibility properties from the numbers 2 to 10 .
Divisor 10 : The remainder should be in the units place. In this case, the number should end with the number 9 .

Divisor 2 : Since the number ends with 9, which make the number odd, there is a remainder of 1 .

Divisor 5: Since 9 is in the units place, and 9 is 4 more than 5 , there is a remainder of 4 .
Divisor 3: To get a remainder of 2 , the sum of the number's digits should be 2,5 or 8 .
E.g. $11 \div 3$ (the quotient is 3 remainder 2) the sum of 11 's digits is 2 .
$14 \div 3$ (the quotient is 4 remainder 2) the sum of 14 's digits is 5 .
$17 \div 3$ (the quotient is 5 remainder 2) the sum of 17 's digits is 8 .
Divisor 6: For number six, you need to do the same thing you did for number 3.
E.g. $11 \div 6$ (the quotient is 1 remainder 5) the sum of 11 's digits is 2 .
$17 \div 6$ (the quotient is 2 remainder 5) the sum of 17 's digits is 8 .
$23 \div 6$ (the quotient is 3 remainder 5) the sum of 23 's digits is 5 .
Divisor 9: For number 9, you need to add the number's digits to get the remainder. The remainder is the same number as the sum of the number's digits.
E.g. $53 \div 9$ (the quotient is 5 remainder 8) the sum of the digits is 8 .
$22 \div 9$ (the quotient is 2 remainder 4) the sum of the digits is 4 .
Divisor 4: Since our number ends with 9 , to get a remainder of 3 , we need our number to end with $19,39,59,79$ or 99.

Divisor 8: If you want a remainder of seven, and your number ends with 19,59 or 99 , then the hundredth place should be $1,3,5,7$ or 9 . This is because in the second part of 8 's cycle, 19, 59 and 99 , when divided by 8 , will have a remainder of 7 . For 39 and 79 , the hundredths place should be $2,4,6$ or 8 . Take away 7 from the number. If the last 3 digits are divisible by 8 , you have a remainder of 7 . Based on this rule we can eliminate numbers.
$119,159,199,239,279,319,359,399,439,479,519,559,599,639,679,719,759,799$, $839,879,919,959$ and 999 give a remainder of 7 when divided by 8

The number cannot be a 2-digit number because :

19, 79 : These numbers don't work because, when divided by 3 , they do not give a remainder of 2 .

39, 99 : These numbers don't work because they are divisible by 3 .

59 : This number doesn't work because, when divided by 7 , it gives a remainder of 3 .
Now, we can start looking for 3 digit numbers.
We know that our number should end with 19, 39, 59, 79 and 99, and that its digits should add up to 8 .

The numbers are now :

179, 539 : These numbers won't work because, when divided by 8 , they do not give a remainder of 7 .

359, 719, 899 : These numbers won't work because, when divided by 7 , they do not give a remainder of 6 .

629, 269, 449, 809 : These numbers won't work because, when divided by 4 , it gives a remainder of 1 . Numbers that end with $09,29,49,69$ and 89 should be ignored.

Therefore, the number is not a three digit number.

The number can now be :
$1169,1619,6119,1259,1529,2159,2519,5129,5219,2249,2429,4229,1349,1439$, 3149, 3419, 4139, 4319, 3239, 3329, 2339, 8009, 7109, 7019, 1079, 1709, 6209, 6029, 2069, 2609, 5309, 5039, 3059, 3509, 4409, 4049

1619, 2339, 1259, 5219, 3419, 4139, 7019, 3059 : These numbers won't work because, when divided by 8 , they do not give a remainder of 7 .
$3239,4319,6119,1079,2159,1439$: These numbers won't work because, when divided by 7 , they do not give a remainder of 6 .

2519, 5039 : These numbers do work!
$1169,1529,5129,1349,3149,2249,2429,4229,3329,8009,7109,1709,6209,6029$, 2069, 2609, 5309, 3509, 4409, 4049 : These numbers won't work because, when divided by 4 , it gives a remainder of 1 . Numbers that end with $09,29,49,69$ and 89 should be ignored.

The answers are 5039 and 2519. They satisfy all the conditions.
-

