Nrich "In the Box" Solution

Paris Papadopoulos
Teacher of Mathematics - IES Täby

January 8, 2020

Let r be the number of red, b the number of blue and t the total number of ribbons. To have a fair game we need:

$$
P(r r)+P(b b)=P(r b)+P(b r) \quad \Rightarrow \quad \frac{r}{t} \cdot \frac{r-1}{t-1}+\frac{b}{t} \cdot \frac{b-1}{t-1}=\frac{r}{t} \cdot \frac{b}{t-1}+\frac{b}{t} \cdot \frac{r}{t-1}
$$

which easily simplifies to:

$$
\begin{equation*}
r(r-1)+b(b-1)=2 r b \tag{1}
\end{equation*}
$$

We can choose to solve (1) as a quadratic with respect to r :

$$
\begin{equation*}
r^{2}-(2 b+1) r+b(b-1)=0 \tag{2}
\end{equation*}
$$

The determinant is:

$$
D=(2 b+1)^{2}-4 b(b-1) \quad \Rightarrow \quad D=8 b+1
$$

and the solutions will be:

$$
r=\frac{2 b+1 \pm \sqrt{8 b+1}}{2}
$$

Demanding integer solutions we see that the determinant must be a perfect square but since $2 b+1$ is an odd number the determinant's square root must also be odd. Overall the determinant must be the square of an odd number, therefore we have:

$$
D=(2 n+1)^{2} \quad \Rightarrow \quad 8 b+1=(2 n+1)^{2} \quad n \in \mathbb{N}
$$

which gives us the solutions for b and r :

$$
\mathbf{b}=\frac{\mathbf{n}(\mathbf{n}+\mathbf{1})}{\mathbf{2}} \quad \text { and } \quad \mathbf{r}=\frac{\mathbf{n}(\mathbf{n}-\mathbf{1})}{2} \quad \dagger
$$

These are consecutive elements of the sequence of triangular numbers $(0,1,3,6,10,15,21, \ldots)$ which are produced by the following sum:

$$
T_{n}=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}=\binom{n+1}{2}
$$

The last form is a binomial coefficient, it represents the number of distinct pairs that can be selected from $n+1$ objects, and it is read aloud as "n plus one choose two".

More information on triangular numbers can be found on wikipedia.
\dagger The other solution for r simply gives $\frac{(n+1)(n+2)}{2}$ which is the next instead of the previous triangular number.

