Copyright © University of Cambridge. All rights reserved.

'Big Fibonacci' printed from

Show menu

Let the first two terms of the sequence be $a$ and $b$ respectively.

Then the next three terms are $a+b$, $a+2b$, $2a+3b$. So $2a+3b = 2004$.

For $a$ to be as large as possible, we need $b$ to be as small as possible, consistent with both being positive integers.

If $b=1$ then $2a=2001$, but $a$ is an integer, so $b\not=1$.

However, if $b=2$ then $2a=1998$, so the maximum possible value of $a$ is $999$, giving us the first five terms:
999, 2, 1001, 1003, 2004

This problem is taken from the UKMT Mathematical Challenges.
View the archive of all weekly problems grouped by curriculum topic

View the previous week's solution
View the current weekly problem