### Euler's Squares

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square. Three of the numbers that he found are a = 18530, b=65570, c=45986. Find the fourth number, x. You could do this by trial and error, and a spreadsheet would be a good tool for such work. Write down a+x = P^2, b+x = Q^2, c+x = R^2, and then focus on Q^2-R^2=b-c which is known. Moreover you know that Q > sqrtb and R > sqrtc . Use this to show that Q-R is less than or equal to 41 . Use a spreadsheet to calculate values of Q+R , Q and x for values of Q-R from 1 to 41 , and hence to find the value of x for which a+x is a perfect square.

### Diophantine N-tuples

Take any whole number q. Calculate q^2 - 1. Factorize q^2-1 to give two factors a and b (not necessarily q+1 and q-1). Put c = a + b + 2q . Then you will find that ab+1 , bc+1 and ca+1 are all perfect squares. Prove that this method always gives three perfect squares. The numbers a1, a2, ... an are called a Diophantine n-tuple if aras + 1 is a perfect square whenever r is not equal to s . The whole subject started with Diophantus of Alexandria who found that the rational numbers 1/16, 33/16, 68/16 and 105/16 have this property. Fermat was the first person to find a Diophantine 4-tuple with whole numbers, namely 1, 3, 8 and 120. Even now no Diophantine 5-tuple with whole numbers is known.

### There's a Limit

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

# Really Mr. Bond

##### Stage: 4 Challenge Level:

115 2 = (110 x 120) + 25
that is 13225

895 2 = (890 x 900) + 25
that is 801025

Can you explain what is happening and generalise?