#### You may also like

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do this?

### Online

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

### Sprouts Explained

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with significant food for thought.

# Take Three Numbers

##### Stage: 2 Challenge Level:

We had nearly $100$ solutions from across the world sent in to us. From Hymers College Junior School we had solutions sent in from all of these pupils, Lucy, Max, Abdul, Rikki, Charlie, Helena, Imogen,  Louisa, Helena, Eva, Harley,  Rory, Thomas, Matthew, Khushi, Adi, Amaan, Mariana, Andrew,  Sunnie , Sophie, Amy,  Rashi, Eilza, Signe, Claire, Adnan, Amar,  James, Adam, Amelia, Ayoun and  Amy .

Elliott from Solihull School in England sent in a good idea linked with Pascals Triangle;

I've coloured in the even numbers in Pascal's Triangle

In this simple calculation I will explain ........ how adding $2$ odd Numbers and an Even number together always adds up to an even number at the end. First of all I will demonstrate the one on the website as you see it is even
More equations
$5+9+4=18$       and  $9+20101=20110+2=20112$

Amrit from  Farm Nursery, Infant, and Junior School  wrote;
All even numbers can be represented as $2a$, and all odd numbers as $2b + 1$, where a and b are integers. Thus the sum is $2b + 1 + 2c + 1 + 2a = 2(a + b + c + 1)$. Thus the answer is always even.

Isabel and Caner  from St Theresa's, Finchley in the UK gave this very thorough explanation

Odd+Odd always Equals even because the next number is always even. For example, if you add $7+3$ you are adding $3$ which is $2$(even)+$1$ and $7$ which is $6$(even)+$1$ even + even = even and $1+1=2$(even) Therefore odd=Odd must always = Even

When you add an even number to an even number it always equals an even number this is because if you add $6$ and $2$ the next number from $6$ is $7$(odd) and the next number from $2$ is $3$(odd) We already proved in our explanation above that odd+odd = even, therefore if you add the 1 more from the even number in both parts of the equation, you will make two, which will combine with the even total of the odd numbers to form another even.

An odd number + an odd number + an even number always equals an even number this is because odd is 1 away from even so it's an even number but when you add an even number + an even number the answer is an even number,when you add an odd number + an odd number the answer is even and when you add even number's together your answer has to be even because your adding an even number to an even number.

Shivek from Monkfield Park Primary School sent in this interesting account;

Example 1.    $5+9 = 14$ ; $14+ 22=36.$
Example 2.    $1+1 = 2.$;  $2+4=6$

Example 3.    $99+99=198$; $198+198=396$.

How  I  did  it? Even numbers end in $0,2,4,6,8$ and odd  numbers end in $1,3,5,7,9$.

Lets add $2$ odd numbers like: $1+3$. You will get $4$
Add $3+5$. You will get $8$  and Add $5+7$. You will get $12$

So, you see: When you add any odd number to another odd number you get an Even number.

Now when you add $2$ even  numbers like $2+2, 4+2 or, 6+4 or 8+4$ you will always get an even number answer. Like ($2+2=4, 4+2=6 or, 6+4=10 or 8+4=12$.)

As you can see above all addition of even numbers ends in $0, 2, 4, 6 or 8$ which are even numbers.

So, Odd Number + Odd Number = Even Number and Even number + even number = Another even number. QED (quite easily done) by Shivek.

Finally from Joanne I think she was rather young and this was written by a helper (?), it says;

Jo used a selection of coloured elastic bands to test out what happens:
$4$ Green bands, $5$ Blue bands, $3$ Yellow bands
GGBBYY
GGBBBY  total = $12$ = even

$6$ Green bands, $7$ Blue bands, $7$ Yellow bands
GGGBBBBYYY
GGGBBBYYYY   total = $20$ = even

She said: 'The number of bands is always even. I put them in $2$ rows and the two rows are the same length, so it is an even number.'

Jo tried a bigger number in her head to test her theory: $10 + 21 + 35 = 66$ = even

Jo tried to work out why her number would be even by working out a rule:
even + odd + odd = even; (even + odd = odd, then odd + odd = even)