Unit fractions

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem



Consider the equation ${1\over a} +{1\over b}+{1\over c} = 1$ where $a$, $b$ and $c$ are natural numbers and $0 < a < b < c$. Prove that $a< 3$ and also that $b< 4$ and hence that there is only one set of values which satisfy this equation.

Find the six sets of values which satisfy the equation ${1\over a} +{1\over b}+{1\over c} +{1\over d}= 1$ where $a$, $b$, $c$ and $d$ are natural numbers and $0 < a < b < c < d$.