You may also like

problem icon

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

problem icon

Calendar Capers

Choose any three by three square of dates on a calendar page...

problem icon

Latin Numbers

Can you create a Latin Square from multiples of a six digit number?

Rolling Along the Trail

Stage: 3 Short Challenge Level: Challenge Level:2 Challenge Level:2

The possible scores that can be obtained are: $1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,30,36$.

The third and fourth scores differ by $11$. The only pairs of numbers that do this are $(1,12)$, $(4,15)$, $(5,16)$, $(9,20)$ and $(25,36)$.

When these pairs are completed into sequences, they become:

Of these, only the fourth one uses only accessible numbers, so the sequence is $10,15,9,20,12$.

This problem is taken from the UKMT Mathematical Challenges.