You may also like

problem icon

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

problem icon

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

problem icon

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Wood Pile Perimeter

Stage: 3 and 4 Short Challenge Level: Challenge Level:2 Challenge Level:2

The centres of the three circles form an equilateral triangle, so each of the sectors marked is $\frac{1}{6}$ of a circle. The shape below is a rectangle, so the sectors are $\frac 14$ of a circle. The curved portion of the perimeters is therefore the same as each of the circles: $2\pi \times 5 = 10\pi \text{cm}$.

The straight part is the same length as two radii, so is $10\text{cm}$ long.

The perimeter of the shaded shapes is therefore $10+10\pi\text{cm}$.

This problem is taken from the UKMT Mathematical Challenges.
View the archive of all weekly problems grouped by curriculum topic

View the previous week's solution
View the current weekly problem