You may also like

problem icon

Counting Factors

Is there an efficient way to work out how many factors a large number has?

problem icon


Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

problem icon

Oh! Hidden Inside?

Find the number which has 8 divisors, such that the product of the divisors is 331776.


Stage: 3 Short Challenge Level: Challenge Level:2 Challenge Level:2

Suppose there was one extra imaginary student in the production. Then, when they lined up in threes, the extra student could go with the left-over students to make another line. The same would happen with fours, fives and sixes.

Therefore, when there is one extra student, the number is divisible by $3$, $4$, $5$ and $6$. This means it is a common multiple of these numbers. The lowest common multiple of $3$, $4$, $5$ and $6$ is $60$, so there must be $60$ students with the extra.

Therefore the number of students (without the imaginary student) is $59$.

This problem is taken from the UKMT Mathematical Challenges.
View the archive of all weekly problems grouped by curriculum topic

View the previous week's solution
View the current weekly problem