You may also like

problem icon

14 Divisors

What is the smallest number with exactly 14 divisors?

problem icon

Summing Consecutive Numbers

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

problem icon

Dozens

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Weekly Problem 33 - 2010

Stage: 3 Short Challenge Level: Challenge Level:1

Firstly, note that if $n \ge 10$, then $n^3 \ge 10n^2$ so $n^3$ will have at least one more digit than $n^2$.
For all $n< 10$, we have $n^2< 100$, so $n^2$ has either 1 or 2 digits, but $n^3$ has 3 digits for $n> 4$ since $5^3 = 125$, so we need only consider $n = 1, 2, 3$ or $4$.
For $n=1$ and $2$, $n^2$ and $n^3$ both have one digit; for $n = 4, n^2 = 16$ and $n^3 = 64$ both have two digits.
However for $n=3, n^2=9$ has one digit while $n^3 = 27$ has two digits.

This problem is taken from the UKMT Mathematical Challenges.

View the previous week's solution
View the current weekly problem