You may also like

problem icon

Tri-split

A point P is selected anywhere inside an equilateral triangle. What can you say about the sum of the perpendicular distances from P to the sides of the triangle? Can you prove your conjecture?

problem icon

Fitting In

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ

problem icon

No Right Angle Here

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

Altitude Inequalities

Stage: 4 Short Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A triangle $T$ has an area of $1$cm$^2$. Let $M$ be the product of the perimeter of $T$ and the sum of the three altitudes of $T$. Which of the following statements is false?

A. There are (or there exist) triangles $T$ for which $M> 1000$
B. $M> 6$ for all triangles $T$
C. There are triangles $T$ for which $M=18$
D. $M> 16$ for all right-angled triangles
E. There are triangles $T$ for which $M< 12$

If you liked this problem, here is an NRICH task which challenges you to use similar mathematical ideas.

 

 

This problem is taken from the UKMT Mathematical Challenges.

View the previous week's solution
View the current weekly problem