In particular
Can you find formulas giving all the solutions to 7x + 11y = 100 where x and y are integers?
Problem
Write 100 as the sum of two positive integers, one divisible by
7 and the other divisible by 11. Use your answer to find formulas
giving all the solutions of the following equation where x and y
are integers.
$$7x + 11y =100$$
Student Solutions
To find two positive integers adding up to 100, one a multiple of 7 and the other a multiple of 11, you can try 7 + 93, 14 + 86, 21 + 79, 28 + 72, 35 + 65, 42 + 58, 49 + 51 and 56 + 44 ... etc. and the only pair satisfying this condition is 56 and 44. Hence $x=8$ and $y=4$ is one particular solution of $7x + 11y =100$ and (it turns out) the only solution where both $x$ and $y$ are positive integers.
Jonathan Gill of St Peters' College, Adelaide restricted his search for solutions of this equation to positive integers and found the solution $x=8$ and $y=4$ by trying values of $x$ from $x=1$ to $x=13$ in turn.
Andaleeb Ahmed, age 17, Woodhouse Sixth Form College, London extended the search for solutions to include negative integers. This is Andaleeb's solution: The equation $7x + 11y = 100$ has solutions:
$\begin{eqnarray} \\ x_1 &=& 8 & \ \ \ & y_1 &=& 4\\ x_2 &=& -3 & \ \ \ & y_2 &=& 11\\ x_3 &=& -14 & \ \ \ & y_3 &=& 18\\ x_4 &=& -25 & \ \ \ & y_4 &=& 25\\ \end{eqnarray}$
From this we notice that the difference between two consecutive $x$ terms is -11 and the difference in $7x$ is therefore -77. The difference between two consecutive $y$ terms is +7 and so the difference in $11y$ is +77. This enables us to deduce the general terms $x_n$ and $y_n$ which are:
$\begin{eqnarray} \\ x_n &=& 8 - 11(n-1)\\ y_n &=& 4 + 7(n-1). \end{eqnarray}$
Thus by substituting any values of $n$ (it can be any integer including 0 and negative integers) in these expressions we can find infinitely many integer solutions of $7x + 11y = 100$.
In general if we can find one particular solution to an equation of this type we can use this method to find an infinite set of solutions.