### Chocolate

There are three tables in a room with blocks of chocolate on each. Where would be the best place for each child in the class to sit if they came in one at a time?

### F'arc'tion

At the corner of the cube circular arcs are drawn and the area enclosed shaded. What fraction of the surface area of the cube is shaded? Try working out the answer without recourse to pencil and paper.

### Do Unto Caesar

At the beginning of the night three poker players; Alan, Bernie and Craig had money in the ratios 7 : 6 : 5. At the end of the night the ratio was 6 : 5 : 4. One of them won $1 200. What were the assets of the players at the beginning of the evening? # Keep it Simple ##### Stage: 3 Challenge Level: #### Unit fractions (fractions which have numerators of 1) can be written as the sum of two different unit fractions. For example$\frac{1}{2} = \frac{1}{3} + \frac{1}{6}$Charlie thought he'd spotted a rule and made up some more examples.$\frac{1}{2} = \frac{1}{10} + \frac{1}{20}\frac{1}{3} = \frac{1}{4} + \frac{1}{12}\frac{1}{3} = \frac{1}{7} + \frac{1}{21}\frac{1}{4} = \frac{1}{5} + \frac{1}{20}$Are all his examples correct? What do you notice about the sums that are correct? Find some other correct examples.. How would you explain to Charlie how to generate lots of correct examples? #### Alison started playing around with$\frac{1}{6}$and was surprised to find that there wasn't just one way of doing this. She found:$\frac{1}{6} = \frac{1}{7} + \frac{1}{42}\frac{1}{6} = \frac{1}{8} + \frac{1}{24}\frac{1}{6} = \frac{1}{9} + \frac{1}{18}\frac{1}{6} = \frac{1}{10} + \frac{1}{15}\frac{1}{6} = \frac{1}{12} + \frac{1}{12}$(BUT she realised this one didn't count because they were not different.) #### Charlie tried to do the same with$\frac{1}{8}$. Can you finish Charlie's calculations to see which ones work?$\frac{1}{8} = \frac{1}{9} + ?\frac{1}{8} = \frac{1}{10} + ?\frac{1}{8} = \frac{1}{11} + ?\$

..........

Can all unit fractions be made in more than one way like this?

Choose different unit fractions of your own to test out your theories.