Round and round
Problem
Prove that the shaded area of the semicircle is equal to the area of the inner circle.

What percentage of the sector OAB is taken up with the inner circle?

What happens if angle AOB is less than 90 ° or between 90 and 180 degrees?
Student Solutions
Well done Kang Hong Joo from the Chinese High School, Singapore; Lucinda Hearth from Stamford High School; Jessica Zhang; Matthew Hodgetts from King Edward VI Camp Hill School, Birmingham; Tom Davie and Michael Grey from Madras College, St. Andrews.
Case 1: a semicircle

Let the radius of the inner circle be $r$; then its area is $\pi{r^2}$. The area of the semicircle is $\pi(2r)^2/2$, which is $2\pi{r^2}$. The percentage of the semicircle covered by the inner circle is 50\%.
Case 2: a quadrant

The area of the inner circle is $\pi{r^2}$; the radius of the quadrant is $r(1 + \sqrt{2})$, and the area of the quadrant is
Case 3: a sector of angle $2\alpha$

The area of the inner circle is $\pi{r^2}$. Taking the radius of the sector to be 1 unit, then
Therefore
When $\alpha = {\pi\over3} = 60^{\circ}$, then $\sin\alpha = {\sqrt{3}\over2}$, and this ratio is
a | 30 o | 45 o | 60 o | 90 o |
Ratio (nearest 1%) |
67% | 69% | 65% | 50% |