Copyright © University of Cambridge. All rights reserved.

'Blockupied' printed from

Show menu

A $1\times2\times3$ block is placed on an $8\times8$ board, as shown with the $1\times2$ face $X$ at the bottom. It is rolled over an edge without slipping onto a $1\times3$ face $Y$, then onto the $2\times3$ face $Z$,then onto $X$, $Y$, $Z$ again in that order. How many different squares on the board has the block occupied altogether, including the starting and ending positions?

Block on Board


If you liked this problem, here is an NRICH task which challenges you to use similar mathematical ideas.




This problem is taken from the UKMT Mathematical Challenges.
View the archive of all weekly problems grouped by curriculum topic

View the previous week's solution
View the current weekly problem