You may also like

problem icon

Two and Four Dimensional Numbers

Investigate matrix models for complex numbers and quaternions.

problem icon

Quaternions and Rotations

Find out how the quaternion function G(v) = qvq^-1 gives a simple algebraic method for working with rotations in 3-space.

Quaternions and Reflections

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Note that the quaternion product explored here (of two 4-dimensional numbers) is simply a combination of the scalar product and the vector product of the corresponding vectors in 3-dimensional space which explains where the definitions of these products of vectors comes from.


reflection You need to know that, as $v = u_0$ is a point on the mirror-plane $\Pi$, by simply substituting the co-ordinates of the point in the equation of the plane, you get $u_0\cdot n =0$.

The first two parts have been solved by Andrei of Tudor Vianu National College, Bucharest, Romania.

(1)We first multiply the pure quaternions: $v_1 = x_1i + y_1j + z_1k$ and $v_2 = x_2i + y_2j + z_2k.$ to obtain: $$v_1v_2 = -x_1x_2 - y_1y_2 - z_1z_2 + (y_1z_2 - y_2z_1)i + (z_1x_2 - x_1z_2)j + (x_1y_2 - y_1x_2)k .$$ The scalar product is: $v_1\cdot v_2 = x_1x_2 + y_1y_2 + z_1z_2$ and the vector product is: $$v_1 \times v_2 = (y_1z_2 - y_2z_1)i + (z_1x_2 + x_1z_2)j + (x_1y_2 - y_1x_2)k$$ We observe that the quaternion product is a combination of the scalar product and the vector product of the corresponding vectors in $R^3$, that is: $v_1v_2 = -( v_1 \cdot v_2) + (v_1 \times v_2)$

(2) Now, considering all the points on the unit sphere $v = xi + yj + zk$ where $|v| = \sqrt (x^2 + y^2 + z^2) = 1$, we calculate $v^2$. We find $v^2 = -x^2 -y^2 - z^2 = -1$ so there are infinitely square roots of -1 in $R^3$.

In an alternative notation the points on the unit sphere are given by: $v = \cos \theta \cos \phi i + \cos \theta \sin \phi j + \sin^2 \theta k$ where $|v| = \sqrt (\cos^2 \theta \cos^2 \phi + \cos^2 \theta \sin^2 \phi + \sin^2\theta) = 1$.

The solution to the third part is as follows:

(3) $u_0n = -u_0\cdot n + u_0\times n = -0 + u_0\times n = 0 + -n\times u_0 = u_0\cdot n -n\times u_0 = -nu_0$ therefore $F(u_0) = nu_0n = n(-nu_0) = -n^2u_0 = u_0$

$F(u_0 + tn) = n(u_0 + tn)n = nu_0n + ntn^2 = u_0 + tn^3 = u_0 - tn$. Any point in $\mathbb{R}^3$ can be written as a sum $u_0 + tn$ for some $u_0$ in $\Pi$ and some $t\geq 0$, so $F$ gives a reflection in $\Pi$.