You may also like

problem icon

Two and Four Dimensional Numbers

Investigate matrix models for complex numbers and quaternions.

problem icon

Quaternions and Rotations

Find out how the quaternion function G(v) = qvq^-1 gives a simple algebraic method for working with rotations in 3-space.

Quaternions and Reflections

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Quaternions are 4-dimensional numbers of the form $(a,x,y,z)= a+x{\bf i}+y{\bf j}+z{\bf k}$ where $a, x, y$ and $z$ are real numbers, ${\bf i, j}$ and ${\bf k}$ are all different square roots of $-1$ and ${\bf i j} = {\bf k} = {\bf -j i},\ {\bf j k} = {\bf i} = {\bf -k j},\ {\bf k i} = {\bf j} = {\bf -i k}.$

The quaternion $a + x{\bf i} + y{\bf j} + z{\bf k}$ has a real part $a$ and a pure quaternion part $x{\bf i} + y{\bf j}+ z{\bf k}$ where ${\bf i, j}$, and ${\bf k}$ are unit vectors along the axes in ${\bf R^3}$.

(1) For the pure quaternions $v_1 = x_1{\bf i}+y_1{\bf j} + z_1{\bf k}$ and $v_2 = x_2{\bf i} +y_2{\bf j} +z_2{\bf k}$ evaluate the quaternion product $v_1v_2$ and compare your answer to the scalar and vector products $v_1 \cdot v_2$ and $v_1 \times v_2$.

(2) Evaluate the quaternion product $v^2$ where $v=x{\bf i} + y{\bf j} + z{\bf k}$ and $|v| = \sqrt (x^2 + y^2 + z^2) = 1$.

Show that, for all real angles $\theta$ and $\phi$, $$v = \cos \theta \cos \phi {\bf i} + \cos \theta \sin \phi {\bf j} + \sin \theta {\bf k}$$ is a square root of -1. This gives the set of all the points on the unit sphere in ${\bf R^3}$ and shows that the quaternion $-1$ has infinitely many square roots (which we call unit pure quaternions ).

reflection
(3) Take any unit pure quaternion $n$ ($n^2=-1$) and consider the plane $\Pi$ through the origin in ${\bf R^3}$ with normal vector $n$. Then the plane $\Pi$ has equation $a x + b y + c z = 0 = v\cdot n$.

If $u_0$ is a point on the plane $\Pi$ then $u_0\cdot n =0$ and the points $u_0+ t n$ and $u_0 - t n$ are reflections of each other in the plane.

Show that the quaternion map $F(u) = n u n$ gives reflection in the plane $\Pi$ by showing:

(i)$u_0n = -n u_0$ and hence $F(u_0)=u_0$ so that all points on the plane are fixed by this mapping, and

(ii) $F(u_0 + t n) = u_0 - t n$ for all scalars $t$.

If you want to know how quaternions are used in computer graphics and animation in film making read the Plus Article Maths goes to the movies .