Copyright © University of Cambridge. All rights reserved.

'Series Sums' printed from http://nrich.maths.org/

Show menu


As each sum develops it should become clear that the last number in each sum is triangular. So for $S_n$, the last number in the sum is the $n^{th}$ triangular number $= n(n + 1)/2$. Bearing this in mind and the fact that the first number in the sum is the $(n - 1)^{th}$ triangular number plus $1$, then,
\begin{eqnarray}S_n &=& \frac{n(n - 1)} {2} + 1 + \frac{n(n - 1)} {2} + 2 + \frac{n(n - 1)} {2} + 3 + \frac{n(n - 1)} {2} + \cdots + \frac{n(n - 1)} {2} + n \\ \; &=& \frac{n^2(n - 1)}{2} + (1 + 2 + 3 + 4 + \cdots + n) \\ \; &=& \frac{n^2(n - 1)}{2} + \frac{n(n + 1)}{2} \\ \; &=& \frac{n(n^2 - n)}{2} + \frac{n(n + 1)}{2} \\ S_n &=& \frac{n(n^2 + 1)}{2}\end{eqnarray}
Therefore $S_{17} = 17 \times\frac{17^2+1}{2} = 17 \times{290\over2} = 2465$