You may also like

problem icon


What are the missing numbers in the pyramids?

problem icon

Always the Same

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

problem icon

Odd Differences

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Below 400

Stage: 3 and 4 Short Challenge Level: Challenge Level:1


Note that the number at the end of the $n$th row is $n^2$, so 400 will lie at the end of the 20th row. The row below will end in 21$^2$, i.e., 441, so the number directly below 400 will be 440.

This problem is taken from the UKMT Mathematical Challenges.
View the archive of all weekly problems grouped by curriculum topic

View the previous week's solution
View the current weekly problem