Copyright © University of Cambridge. All rights reserved.

## 'Areas of Parallelograms' printed from http://nrich.maths.org/

Here are two parallelograms, defined by the vectors $\mathbf{p}$ and $\mathbf{q}$. Can you find their areas?

a) $\mathbf{p}=\left(\begin{array}{c}3\\ 0\end{array}\right), \mathbf{q}=\left(\begin{array}{c}5 \\ 2\end{array}\right)$

b) $\mathbf{p}=\left(\begin{array}{c}3 \\ 2\end{array}\right), \mathbf{q}=\left(\begin{array}{c}0 \\ 4\end{array}\right)$

Select different vectors $\mathbf{p}$ and $\mathbf{q}$, where one vector is along a co-ordinate axis,and find the areas of the corresponding parallelograms. Can you discover a quick way of doing this?

Here are two more parallelograms, again defined by vectors $\mathbf{p}$ and $\mathbf{q}$. This time, neither $\mathbf{p}$ nor $\mathbf{q}$ lies along an axis. Can you find the areas of these parallelograms?

c) $\mathbf{p}=\left(\begin{array}{c}4 \\ 1\end{array}\right), \mathbf{q}=\left(\begin{array}{c}3 \\ 3\end{array}\right)$

d) $\mathbf{p}=\left(\begin{array}{c}2 \\ 4\end{array}\right), \mathbf{q}=\left(\begin{array}{c}-1 \\ 3\end{array}\right)$

Try some others.

Now try to generalise this.

Can you find the areas of a family of parallelograms, e.g. $\mathbf{p}=\left(\begin{array}{c}a \\ 2\end{array}\right)$ and $\mathbf{q}=\left(\begin{array}{c}4 \\ 5\end{array}\right)$?

Can you find the area of the parallelogram defined by the vectors $\mathbf{p}=\left(\begin{array}{c}a \\ b\end{array}\right)$ and $\mathbf{q}=\left(\begin{array}{c}c \\ d\end{array}\right)$?

If you have found a rule, does it ever give you negative areas? Can you predict which vector pairs have this effect?