You may also like

problem icon

Walk and Ride

How far have these students walked by the time the teacher's car reaches them after their bus broke down?

problem icon

Fence It

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

problem icon

How Far Does it Move?

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

Speeding Up, Slowing Down

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Try to approach the problem systematically, keeping one variable fixed and just altering the other one.

As you go along try to understand why the graph takes the shape that it does:
  • by relating it to the rolling polygon and the journey of the red dot
  • by trying to predict what will happen before you set the polygon rolling
Could the dot have been on the centre of a polygon?
Try for each of the polygons.

Could the dot have been on the centre of the base of a polygon?
Try for each of the polygons.

Could the dot have been on the centre of one of the sloping sides of a polygon?
Try for each of the polygons.

Could the dot have been on the centre of a side opposite the base of a polygon?
Try for each of the polygons.

Could the dot have been on a vertex opposite the base of a polygon?
Try for each of the polygons.

Could the dot have been on a vertex on the base of a polygon?
Try for each of the polygons...

Alternatively...
  • try all possible positions of the dot in a triangle,
  • and then in a square,
  • and then in a pentagon,
  • and then in a hexagon...