You may also like

problem icon


Investigate the graphs of y = [1 + (x - t)^2][1 + (x + t^)2] as the parameter t varies.

problem icon

Sine Problem

In this 'mesh' of sine graphs, one of the graphs is the graph of the sine function. Find the equations of the other graphs to reproduce the pattern.

problem icon

Cocked Hat

Sketch the graphs for this implicitly defined family of functions.

Maltese Cross

Stage: 5 Challenge Level: Challenge Level:1

Jim sent us his solution:

I made the substitution $xy(x^2 - y^2) = x^2 + y^2$ that was given in the hint. This gave:

$$r^4\cos \theta \sin \theta (\cos^2\theta-\sin^2\theta)= r^2$$

I then subsituted the double angle formulae:

$$\cos2\theta=\cos^2\theta-\sin^2\theta$$ and $$\sin 2\theta=2\sin\theta\cos\theta$$

to get $r^4\sin4\theta=4r^2$

Next, I looked for points distance $2$ from the origin. So $r=2$. This meant that $sin 4\theta=1$, and sosince$\theta$ must be between $0$ and $360$ degrees,it has four solutions: $22.5$ degrees, $112.5$ degrees, $202.5$ degrees and $292.5$ degrees.

I rearranged theformula above to get $\sin4\theta=4/r^2$. Since there are only solutions to $\sin$ that are no more than $1$, $r$ must be at least $2$. This formula also implies that $\sin4\theta$ is never negative, and so $\theta$ can only only take the values in the ranges $0$ to $45$ degrees, $90$ to $135$ degrees, $180$ to $225$ degrees and $270$ to $315$ degrees.

When I made the substitution $y=px$, I got $x^2=\frac{1+p^2}{p(1-p^2)}$. In order for this line to only cut the graphat the origin, this must have no solutions. So we need $x^2< 0$. This meant that $1< p^2$, and so $|p|> 1$

For the next part, I just substituted in the different co-ordinates, and found they satisfy the same equation as $(a,b)$ do, and so must be also on the graph.

Finally, I noticed that from the previous observation, that the graph has rotational symmetry about the origin,with an angle of $90$ degrees. I used this to sketch the graph, which I used a computer to confirm: