### Biscuit Decorations

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

### Constant Counting

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

### Skip Counting

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

# Same Length Trains

## Same Length Trains

Matt made a train with the Cuisenaire rods. It looked like this:

Katie made one too, exactly the same length, with just white rods. Hers looked like this:

Can you make some trains the same length as Matt's train, with rods of just one colour?
How many different ones can you make?

You may like to use the interactivity below to help you. Click on 'Rods' to choose your rods.

Full Screen Version
This text is usually replaced by the Flash movie.

### Why do this problem?

This problem is a good way for children to gain familiarity with factors and multiples in a non-threatening environment.

You could also make this an opportunity to encourage the children to have a system for making sure that they find all the possible solutions.

### Possible approach

Using the interactivity on an interactive whiteboard or via a projector would be a good way to introduce the problem.

Ideally, it would be good for the pupils to then work in pairs with "real" Cuisenaire rods and talk about how they are solving the problem.

Returning again to the whiteboard and interactivity will allow the whole group to share their solutions.

You could model starting with the red rod and working up to the green, then pink, then yellow etc if the children themselves do not find some good ways.

### Key questions

How many white rods did Katie use?
How many red rods did you need to make the same length?
Which colour rods fit in exactly?
Which colour rods cannot be fitted in exactly?
How will you know that you have found them all?
How can you record what you have done?

### Possible extension

Learners could try using different numbers of white rods to make "same length trains" with rods of just one colour. Using $21$, $22$, $23$ and $24$ could prove interesting.

Pupils who enjoy this problem might like to try Making Trains.

### Possible support

Try to use real Cuisenaire rods if at all possible, otherwise use the interactivity and work through the different lengths. You could suggest recording on squared paper.