You may also like

problem icon

Bang's Theorem

If all the faces of a tetrahedron have the same perimeter then show that they are all congruent.

problem icon

Rudolff's Problem

A group of 20 people pay a total of £20 to see an exhibition. The admission price is £3 for men, £2 for women and 50p for children. How many men, women and children are there in the group?

problem icon

Medallions

I keep three circular medallions in a rectangular box in which they just fit with each one touching the other two. The smallest one has radius 4 cm and touches one side of the box, the middle sized one has radius 9 cm and touches two sides of the box and the largest one touches three sides of the box. What is the radius of the largest one?

Converse

Stage: 4 Challenge Level: Challenge Level:1

Clearly if $a$, $b$ and $c$ are the lengths of the sides of a triangle and the triangle is equilateral then

$a^2 + b^2 + c^2 = ab + bc + ca$.

Is the converse true, and if so can you prove it? That is if $a^2 + b^2 + c^2 = ab + bc + ca$ is the triangle with side lengths $a$, $b$ and $c$ necessarily equilateral?