Copyright © University of Cambridge. All rights reserved.

## 'Tea Cups' printed from http://nrich.maths.org/

Aunt Jane had been to a jumble sale and bought a whole lot of
cups and saucers - she's having many visitors these days and felt
that she needed some more. You are staying with her and when she
arrives home you help her to unpack the cups and saucers.

There are four sets: a set of white, a set of red, a set of blue
and a set of green. In each set there are four cups and four
saucers. So there are sixteen cups and sixteen saucers
altogether.

Just for the fun of it, you decide to mix them around a bit so
that there are sixteen different-looking cup/saucer combinations
laid out on the table in a very long line.

So, for example:

a) there is a red cup on a green saucer but not another the
same, although there is a green cup on a red saucer;

b) there is a red cup on a red saucer but that's the only one like
it.

There are these sixteen different cup/saucer combinations
on the table and you think about arranging them in a big square.
Because there are sixteen, you realise that there are going to
be four rows with four in each row (or if you like,
four rows and four columns).

So here is the challenge to start off this
investigation:

Place these sixteen different combinations of cup/saucer in
this four by four arrangement with the following rules:-

1) In any row there must only be one cup of each colour;

2) In any row there must only be one saucer of each colour;

3) In any column there must only be one cup of each colour;

4) In any column there must be only one saucer of each colour.

Remember
that these sixteen cup/saucers are all different so, for
example, you CANNOT have a red cup on a green saucer somewhere and
another red cup on a green saucer somewhere else.

There are a lot
of different ways of approaching this challenge.

When you think you have completed it, check it through very
carefully. It's even a good idea to get a friend who has seen
the rules to check it also.