You may also like

problem icon

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

problem icon

Degree Ceremony

What does Pythagoras' Theorem tell you about these angles: 90°, (45+x)° and (45-x)° in a triangle?

problem icon

Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

OK! Now Prove It

Stage: 5 Challenge Level: Challenge Level:1
Notice that $$1^2 = {1\times 2\times 3 \over 6}$$ $$1^2 + 3^2 = {3\times 4\times 5 \over 6}$$ $$1^2 + 3^2 + 5^2 = {5\times 6\times 7 \over 6}.$$ Make a conjecture about the sum $$1^2 + 3^2 + 5^2 + \dots + (2n - 1)^2$$ and prove your conjecture.