You may also like

problem icon

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

problem icon

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

problem icon

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Medal Ceremony

Stage: 3 and 4 Short Challenge Level: Challenge Level:1

There are $6$ different students who could receive the first gold medal, then $5$ others for the second and $4$ remaining for the third. Therefore there are $6 \times 5 \times 4 = 120$ orders in which the medals can be presented. However, this counts each set of three people winning the medals in each of the six orders, so there are $120 \div 6 = 20$ sets of three people who could win gold.

For each of these, one of the remaining three people must win bronze and the others silver, so there are $20 \times 3 = 60$ ways in which the medals can be awarded.

This problem is taken from the UKMT Mathematical Challenges.
View the archive of all weekly problems grouped by curriculum topic

View the previous week's solution
View the current weekly problem