Copyright © University of Cambridge. All rights reserved.

'Triangles Within Squares' printed from

Show menu

Image with six copies of the second triangular number and one of hte first triangular number added to make a square

The diagram above shows that: $$ 8 \times T_2 + 1 = 25 = 5^2$$

Use a similar method to help you verify that: $$ 8 \times T_3 + 1 = 49 = 7^2$$ Can you generalise this result?

Can you find a rule in terms of $ T_n $ and a related square number?

Can you find a similar rule involving square numbers for $T_{n}, T_{n+2}$ and several copies of $T_{n+1}$?