### Nim

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

### Latin Numbers

Let N be a six digit number with distinct digits. Find the number N given that the numbers N, 2N, 3N, 4N, 5N, 6N, when written underneath each other, form a latin square (that is each row and each column contains all six digits).

### Back to Basics

Find b where 3723(base 10) = 123(base b).

# Composite Notions

##### Stage: 4 Challenge Level:

The following solution was recieved from Andrei of School 205 Bucharest. Well done and thank you Andrei.

10201 could be written (in base $x$) as:

\begin{align*}10201 &= 1x^0 + 2x^2 + 1x^4 \\ &= x^4 + 2x^2 + 1 \\ &= (x^2 + 1)^2 \end{align*}

Now, I write 10101 in a similar manner, in base $y$:

\begin{align*} 10101& = y^4 + y^2 + 1\\ & = y^4 + 2y^2 - y^2 + 1\\ & = (y^4 + 2y^2 + 1) - y^2\\ & = (y^2 + 1)^2 - y^2\\ & = (y^2 + 1 + y)(y^2 + 1 -y) \end{align*}

Therefore both expressions can be factorised, so they are composite.