**1.** We find the prime factors of five hundred
and ninety-five:

$595 = 5\times 7\times 17$, which are the prime factors.

**2.** We know that the jar holds enough oil to
fill 'granid' silver bottles:

volume of jar = volume of 'granid' bottles

**3.** If $1$ silver bottle holds enough oil to
fill 'ozvik' golden goblets then,

volume of $1$ silver bottle = volume of 'ozvik' golden goblets

Therefore, based on this knowledge, we can make the
statement:

volume of 'granid' silver bottles = volume of 'ozvik'$\times$
'granid' golden goblets.

If we look back to from step 2 we discover that:

volume of the jar = volume of 'ozvik'$\times$ 'granid' golden
goblets

**4.** We can work out that $1$ golden goblet holds
enough oil to fill 'vaswik' crystal spoons: volume of $1$ golden
goblet = volume of 'vaswik' crystal spoons

So this means that,

the volume of 'ozvik'$\times$ 'granid' golden goblets = volume of
'vaswik'$\times$ 'ozvik'$\times$ 'granid' crystal spoons

Using the information from step 3 we can figure out that,

the volume of the jar = volume of 'vaswik'$\times$ 'ozvik'$\times$
'granid' crystal spoons.

**5.** We also know something else important, the
oil in the jar lasted for $595$ days.

The oil in vaswik'$\times$'ozvik'$\times$'granid' spoons lasted for
$595$ days

If we look back at the information in step 4 we can discover
that,

vaswik'$\times$ 'ozvik'$\times$ 'granid' = $595$

vaswik'$\times$ 'ozvik'$\times$ 'granid' = $5\times 7\times 17$

**The genie's words: 'granid', ozvik' and 'vaswik' stand
for our numbers five, seven and seventeen.**

Do you agree with Natasha's thinking and
solution? **Chris Milliken**
also worked hard on this problem and had a
different strategy from Natasha. Do you see how and why your
solution differs too Chris?

Have you solved this problem in a different way? We would like to hear from you.