Copyright © University of Cambridge. All rights reserved.

## 'Watch Your Feet' printed from http://nrich.maths.org/

Have you ever read a Winnie the Pooh poem called "Lines and
Squares" by A.A. Milne? It tells us how Christopher Robin plays a
game with himself as he walks along pavements, trying not to walk
on the "lines" (the edges of the paving stones).

Have you ever done this? I know I have! This investigation is
based on a similar idea - but here I *want* to walk on the
lines!

This is a picture of the path leading up to my front door from
the road:

I like to walk along the cracks of the paving stones, but not
the outside edge of the path itself because I may tread on the
grass.

The only way I can do it is by walking straight down the middle
of the path like this:

If the path were three paving stones wide instead of
just two it would look like this:

Remembering that I can only walk along the sides of the paving
stones and I mustn't tread on the outside edge, how many different
routes can you find for me to take? (By the way, you must not turn
back on yourself, and you must head towards the door or sides - so
you cannot walk towards the road on your journey.)

Do any of your routes have a repeating pattern?

Imagine now that the path is even wider, with
four paving stones:

What different routes can you find now?

Perhaps you could group them into those with a repeating pattern
and those without. Maybe you can find other ways to group the
routes.

If I could also take steps diagonally across a paving stone,
like this:

then there are even more possibilities. Try to find the new
routes yourself, starting with 3 paving stones width. Remember all
the same rules apply as before.