You may also like

problem icon

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

problem icon

Calendar Capers

Choose any three by three square of dates on a calendar page...

problem icon

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Phone Call

Stage: 3 and 4 Short Challenge Level: Challenge Level:1

A new taxi firm needs a memorable phone number. They want a number which has a maximum of two different digits. Their phone number must start with the digit $3$ and be six digits long. How many such numbers are possible?

If you liked this problem, here is an NRICH task that challenges you to use similar mathematical ideas.

This problem is taken from the UKMT Mathematical Challenges.
View the archive of all weekly problems grouped by curriculum topic

View the previous week's solution
View the current weekly problem