Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

One or Two

Stage: 4 Short Challenge Level:

Let the radius of each semicircle be $r$.
In the top diagram, let the side-length of the square be $2x$. By Pythagoras' Theorem,
$x^2 + (2x)^2 = r^2$ and so $5x^2 = r^2$. So this shaded area is $(2x)^2 = 4x^2 = \frac{4r^2}{5}$.

In the bottom diagram, let the side-length of each square be $y$. Then by Pythagoras' Theorem, $y^2 + y^2 = r^2$ and so $2y^2 = r^2$. So this shaded area is $r^2$.

Therefore the ratio of the two shaded areas is $\frac{4}{5} : 1 = 4 : 5$.

This problem is taken from the UKMT Mathematical Challenges.
View the archive of all weekly problems grouped by curriculum topic

View the previous week's solution
View the current weekly problem