You may also like

problem icon

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

problem icon

Calendar Capers

Choose any three by three square of dates on a calendar page...

problem icon

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Digital Division

Stage: 3 Short Challenge Level: Challenge Level:1

A number is a multiple of 6 precisely when it is both a multiple of 2 and of 3. To be a multiple of 2, it will need to end with an even digit; i.e. 0 or 2. To be a multiple of 3, the sum of the digits has to be a multiple of 3.

If it ends with 0, the sum of the other two digits must be a multiple of 3; and only $3 = 1 + 2$ or $6 = 1 + 5$ are possible. That gives the numbers 120, 210, 150, 510.
If it ends with 2, the sum of the others must be $1 = 0 + 1$ or $4 = 1 + 3$. That gives 102, 132 and 312.

Hence 7 of these numbers are divisible by 6.

This problem is taken from the UKMT Mathematical Challenges.